Features
Air Power

FEATURES

Academy physicists probe mystery of black silicon

  • Published
  • By Staff Sgt. Don Branum
  • U.S. Air Force Academy Public Affairs
Physicists here are researching new, more cost-efficient ways to create a substance that could make solar energy cheaper to produce.

Dr. Michael Shaffer and retired Lt. Col. Jody Mandeville are using nanosecond bursts from a 200-milliJoule pulsed laser in the U.S. Air Force Academy's Physics Department to produce black silicon, which is made by treating silicon in a sulfur hexafluoride atmosphere.

Nanosecond pulses are 1 million times longer than the femtosecond bursts currently used to produce black silicon, Doctor Shaffer said. If longer laser exposures produce similar results, black silicon may become much cheaper to manufacture.

"The whole laser system we're using is contained in two feet," Doctor Shaffer explained. "The femtosecond laser requires the whole back of the lab and is much more complex." It's also much more expensive to operate and maintain than the relatively inexpensive nanosecond laser used for black silicon research here.

The research aims to understand exactly what causes black silicon to absorb up to 20 times more light than regular silicon. After laser processing, the silicon's rough texture consists of many micrometer-sized cones, Eric Mazur, a Harvard University physicist, said in an Oct. 11, 2008, New York Times article. Doctor Mazur and his graduate students are credited with discovering black silicon.

"There's some debate as to the exact mechanism that causes the enhanced performance. The sulfur as well as the texturing seems to contribute to the improvements. We are trying to better understand what each does to increase light absorption," Doctor Mandeville said.

The Academy physicists also believe the sulfur is responsible for black silicon's absorption of infrared light, a property not found in normal silicon, Doctor Shaffer said.

Even a dramatic increase in light absorption may only yield a 1 or 2 percent increase in solar cell efficiency, but every step forward counts, Doctor Mandeville said.

"Even if you can improve efficiency by only a couple of percent, that's a big effect because solar energy is a multibillion-dollar industry," he said. "The big push is to get the energy cost per kilowatt-hour to below the cost of burning coal."

Doctor Shaffer is also involved with high-power alkali laser development that may eventually be applied in programs like the airborne laser, ground-based laser defense systems or countermeasure systems to defend aircraft from heat-seeking missiles. Doctor Shaffer holds a doctorate in atomic, molecular and optical physics from Old Dominion University for his work on the photoassociative spectroscopy of ultracold, metastable argon.

Doctor Mandeville's previous projects include research and development at Eglin Air Force Base, Fla., for laser radars. He holds a doctorate in optics and nanotechnology from the University of British Columbia.