HomeNewsArticle Display

AFRL aids NASA in lofty endeavor

Air Force Research Laboratory electrical engineer Corey Boltz makes final adjustments before conducting a proof-of-concept arc test in preparation for follow-up testing to support a NASA research effort. (U.S. Air Force Photo/Holly Jordan)

Corey Boltz, Air Force Research Laboratory electrical engineer, makes final adjustments before conducting a proof-of-concept arc test in preparation for follow-up testing to support a NASA research effort. (U.S. Air Force photo by Holly Jordan)

The Air Force Research Laboratory Materials Evaluation team generates an electrical arc fault in a vacuum chamber in support of a NASA research effort to determine the effects of arcing in Earth-orbit conditions. (U.S. Air Force Photo/Corey Boltz)

The Air Force Research Laboratory materials evaluation team generates an electrical arc fault in a vacuum chamber in support of a NASA research effort to determine the effects of arcing in Earth-orbit conditions. (U.S. Air Force photo by Corey Boltz)

WRIGHT-PATTERSON AIR FORCE BASE, Ohio (AFNS) -- Ingenuity and collaboration were the keys to success as a group of Air Force Research Laboratory engineers took a series of tests to new heights.

At the request of NASA, AFRL rapid-response systems support researchers delved into the realm of space to help determine the effects of unintended electrical arcing on astronaut space suits during extravehicular maintenance.

NASA researchers came to the AFRL team with a simple question. How does an electrical arc behave in a vacuum? Although this may seem like a fairly simple question, it was a concept that had not been explored fully before.

“What was not understood were the ramifications of an arc in space,” said Brett Jordan, electrical and electronic materials evaluation team lead. “What are the mass and velocity of the particles produced by the arcing, and what would be the effects of those metal particles flying off the arc in that environment?”

To answer this question, AFRL began by determining how to build fixtures for a low-pressure test and performing proof-of-concept testing to determine the best method to reliably create an arc in the planned lab setting. This initial series of tests helped the researchers understand the materials, positioning and current needed to successfully generate the arc, as well as the proper test setup to use for an Earth-orbit vacuum environment.

With this initial data in hand, the team then began to prepare for low-pressure testing. Reaching out to fellow AFRL materials and electronics researchers, the team acquired a low-pressure chamber and secured a laboratory for conducting the tests.

“It really was a team effort,” said Corey Boltz, electrical engineer and project lead. “We received assistance from many different teams throughout AFRL to make this happen.”

After another round of experimental tests and setup, the team was ready to begin the final round of testing and data collection. With the assistance of NASA engineers, the AFRL team performed a series of 35 tests in the low-pressure chamber. Each test run was a careful exercise in control and precision. For each individual test, the team followed a rigorous process that involved precise placement of the test fixture, calibration of multiple high-speed data capture cameras and pumping the chamber down to extreme low-pressure atmospheric conditions.

The team completed the tests quickly, despite the complex setup required between each test run. From start to finish, the low-pressure test runs were completed in nine days. Jordan says this was possible because the AFRL test chamber offered capabilities that were not immediately available to the NASA team. Because of the chamber’s design, its pressure could be lowered to the necessary test conditions in about half the time it takes a typical chamber to achieve the same conditions. As a result, more test runs could be completed in a shorter period of time.

“For us, it was all part of our rapid-response mission, and the customer appreciated that quick turnaround,” Boltz said.

The data gathered from the testing provided important data that NASA is using to structure their own set of tests.

“This data-rich testing enabled the optimization of tests being performed at three other facilities, which are adding various other factors related to the extra vehicular activity scenario,” said Amri Hernandez-Pellerano, NASA technical lead. “The AFRL pathfinder tests enabled us to properly plan resources in this study.”

Jordan added that since these tests were the first space vacuum work the group had performed, the testing event benefited AFRL as well by expanding the base of knowledge for electrical arcing in low-pressure environments. He said the data and processes established will be useful for the project researchers and other AFRL teams as they tackle future endeavors.

“As the systems support rapid reaction team, that’s what we do,” said Jordan. “We’re proud of our mission. We take it seriously, we enjoy it, and when we need to come up with good answers quickly, we make it happen quickly.”

Engage

Facebook Twitter
Ever heard of the rule of 0-0-1-3? No. Well it means to have zero alcohol if you're underage, zero drinks if you're… https://t.co/7bNRnhYuWS
RT @HQ_AFMC: #Readiness was on display by our @AFResearchLab teams during a live-virtual-constructive training simulation, enabling #Airmen
RT @AFWERX: We can't wait for 2020: The @USAirForce Advanced Manufacturing Olympics is slated for July 8-9 in Salt Lake City & will bring t…
RT @AirNatlGuard: “The Silver Flag training sites provide our Airmen with real-world scenarios to reinforce our Air Force Specialty Code sk…
RT @US_TRANSCOM: Watch a @usairforce KC-10A refuel, and be refueled during same mission in support of @CJTFOIR. #Togetherwdeliver #NKAWTG #…
RT @AETCommand: Transforming the way we learn with technology is one of our key priorities here in the First Command! Check out the photos…
RT @AirNatlGuard: This week, @ChiefNGB visited the @PRNationalGuard at Muñiz Air National Guard Base to meet with senior leaders and discus…
RT @GenDaveGoldfein: YOU are the most important reason for our mission success. Take care of each other & preserve the connections & commun…
RT @AirmanMagazine: When it comes to acquisitions, the @usairforce has the need for speed. Equipping Airmen with the best technology start…
RT @GenDaveGoldfein: A distinct privilege to help unveil the F-117 exhibit, establishing this remarkable aircraft in its rightful place in…
RT @AirNatlGuard: “For me personally, the CAP and Air Guard go hand in hand. When I look back at any state active duty or state support we…
RT @GenDaveGoldfein: Honored to participate on a panel with my fellow Service Chiefs at the @ReaganInstitute. May our leaders of today & th…
It was just a childhood dream but it crescendoed into this #Airman becoming the only woman in the #AirForce to both… https://t.co/vzGjPe7Vri
RT @USAFReserve: Loadmaster first Reservist to complete USAF Weapons School Advanced Instructor Course (Story by the @403rdWing) #ReserveRe
.@secafoffical will speak about America’s footprint in space going forward at 5:45 EST. Watch live at https://t.co/aSlw5ceGJj
RT @DeptofDefense: LIVE: @EsperDoD delivers keynote remarks at the Reagan National Defense Forum. #RNDF https://t.co/ZXhuaTOQTm
Today, we help Col. Charles McGee, a Tuskegee Airman, combat veteran and American legend, celebrate 💯 sorties aroun… https://t.co/bcmcDr4IYW
December 7, 1941. #PearlHarbor and six other #military bases on the Hawaiian island of Oahu were attacked, beginnin… https://t.co/4GvB8yPpGV
RT @US_TRANSCOM: Take a look at @usairforce Airmen assigned to the @109thAW using their ski-equipped C-130s to deliver supplies to the Arct…